Search results
Results from the WOW.Com Content Network
A ray with a terminus at A, with two points B and C on the right. Given a line and any point A on it, we may consider A as decomposing this line into two parts. Each such part is called a ray and the point A is called its initial point. It is also known as half-line, a one-dimensional half-space. The point A is considered to be a member of the ray.
After this step, each ray that forms an edge of the arrangement extends either upward or downward from its endpoint; it cannot be horizontal. There are downward rays, one per line, and these rays separate + cells of the arrangement that are unbounded in the downward direction. The remaining cells all have a unique bottommost vertex (again ...
Conversely, every line is the set of all solutions of a linear equation. The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0, the line is the graph of the function of x that
In three-dimensional Euclidean space, these three planes represent solutions to linear equations, and their intersection represents the set of common solutions: in this case, a unique point. The blue line is the common solution to two of these equations. Linear algebra is the branch of mathematics concerning linear equations such as:
For example, the solution set for the above equation is a line, since a point in the solution set can be chosen by specifying the value of the parameter z. An infinite solution of higher order may describe a plane, or higher-dimensional set. Different choices for the free variables may lead to different descriptions of the same solution set.
The intersection of a line and a plane in general position in three dimensions is a point. Commonly a line in space is represented parametrically ((), (), ()) and a plane by an equation + + =. Inserting the parameter representation into the equation yields the linear equation
Online computer algebra system with step-by step solutions. Xcas/Giac: Bernard Parisse 2000 2000 1.9.0-99: May 2024: Free GPL: General CAS, also adapted for the HP Prime. Compatible modes for Maple, MuPAD and TI89 syntax. Symbolic spreadsheets, Giac library for use with other programs. ARM ports for some PDAs with Linux or WinCE [30] Yacas
Let each curve C t in the family be given as the solution of an equation f t (x, y)=0 (see implicit curve), where t is a parameter. Write F(t, x, y)=f t (x, y) and assume F is differentiable. The envelope of the family C t is then defined as the set of points (x,y) for which, simultaneously,