Search results
Results from the WOW.Com Content Network
Benthic-pelagic coupling are processes that connect the benthic zone and the pelagic zone through the exchange of energy, mass, or nutrients. These processes play a prominent role in both freshwater and marine ecosystems and are influenced by a number of chemical, biological, and physical forces that are crucial to functions from nutrient cycling to energy transfer in food webs.
The benthic boundary layer (BBL) plays a vital role in the cycling of matter and is commonly referred to as the “endpoint” or "sink" for sediment material, which fuels high metabolic rates for microbial populations. [7] The particles from the pelagic ecosystem sink to the BBL where they will be used by organisms. [2]
Chemical reactions can occur at the sediment-water interface, abiotically. Examples of this would include the oxygenation of lake sediments as a function of free iron content in the sediment (i.e. pyrite formation in sediments), as well as sulfur availability via the sulfur cycle. [11]
As with oceans, the benthic zone is the floor of the lake, composed of accumulated sunken organic matter. The littoral zone is the zone bordering the shore; light penetrates easily and aquatic plants thrive. The pelagic zone represents the broad mass of water, down as far as the depth to which no light penetrates. [9]
Isotope exchange reactions play an important role for the stable isotope geochemistry and for the experimental study of sulfur transformations using radiotracers. Microbially catalyzed processes are partly reversible whereby the back-reaction affects our interpretation of radiotracer experiments and provides a mechanism for isotope fractionation.
Cross-couplings are a subset of the more general coupling reactions. Often cross-coupling reactions require metal catalysts. One important reaction type is this: R−M + R'−X → R−R' + MX (R, R' = organic fragments, usually aryl; M = main group center such as Li or MgX; X = halide) These reactions are used to form carbon–carbon bonds but ...
A range of biochemical calcification (biocalcification) mechanisms exist, indicated by the fact that marine calcifiers use different forms of calcium carbonate minerals. Within this range of mechanisms, there are two broad categories of biogenic calcification in marine organisms: extracellular mineralization and intracellular mineralization.
Consequently, these species have short pelagic larval durations and do not disperse long distances. Planktotrophic larvae feed while they are in the water column and can be over a long time pelagic and so disperse over long distances. This disperse ability is a key adaptation of benthic marine invertebrates. [3]