enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  3. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:

  4. Klein–Gordon equation - Wikipedia

    en.wikipedia.org/wiki/Klein–Gordon_equation

    The equation was named after the physicists Oskar Klein [9] and Walter Gordon, [10] who in 1926 proposed that it describes relativistic electrons. Vladimir Fock also discovered the equation independently in 1926 slightly after Klein's work, [ 11 ] in that Klein's paper was received on 28 April 1926, Fock's paper was received on 30 July 1926 and ...

  5. Relativistic particle - Wikipedia

    en.wikipedia.org/wiki/Relativistic_particle

    In other words, a massive particle is relativistic when its total mass-energy is at least twice its rest mass. This condition implies that the speed of the particle is close to the speed of light. According to the Lorentz factor formula, this requires the particle to move at roughly 85% of the speed of light.

  6. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    The relativistic four-velocity, that is the four-vector representing velocity in relativity, is defined as follows: = = (,) In the above, is the proper time of the path through spacetime, called the world-line, followed by the object velocity the above represents, and

  7. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    If the energy–momentum tensor T μν is that of an electromagnetic field in free space, i.e. if the electromagnetic stress–energy tensor = (+) is used, then the Einstein field equations are called the Einstein–Maxwell equations (with cosmological constant Λ, taken to be zero in conventional relativity theory): + = (+).

  8. Relativistic Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Lagrangian...

    The relativistic Lagrangian can be derived in relativistic mechanics to be of the form: = (˙) (, ˙,). Although, unlike non-relativistic mechanics, the relativistic Lagrangian is not expressed as difference of kinetic energy with potential energy, the relativistic Hamiltonian corresponds to total energy in a similar manner but without including rest energy.

  9. Relativistic quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_mechanics

    A fundamental prediction of special relativity is the relativistic energy–momentum relation; for a particle of rest mass m, and in a particular frame of reference with energy E and 3-momentum p with magnitude in terms of the dot product =, it is: [10]