Search results
Results from the WOW.Com Content Network
A protein structure database is a database that is modeled around the various experimentally determined protein structures. The aim of most protein structure databases is to organize and annotate the protein structures, providing the biological community access to the experimental data in a useful way.
Folded, 3-D structure of ribonuclease A. Anfinsen's dogma, also known as the thermodynamic hypothesis, is a postulate in molecular biology.It states that, at least for a small globular protein in its standard physiological environment, the native structure is determined only by the protein's amino acid sequence. [1]
Protein primary structure is the linear sequence of amino acids in a peptide or protein. [1] By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynthesis is most commonly performed by ribosomes in cells. Peptides can also be synthesized in the ...
An alpha-helix with hydrogen bonds (yellow dots) The α-helix is the most abundant type of secondary structure in proteins. The α-helix has 3.6 amino acids per turn with an H-bond formed between every fourth residue; the average length is 10 amino acids (3 turns) or 10 Å but varies from 5 to 40 (1.5 to 11 turns).
Protein tertiary structure can be divided into four main classes based on the secondary structural content of the domain. [25] All-α domains have a domain core built exclusively from α-helices. This class is dominated by small folds, many of which form a simple bundle with helices running up and down.
At the top level are all alpha proteins (domains consisting of alpha helices), all beta proteins (domains consisting of beta sheets), and mixed alpha helix/beta sheet proteins. While most proteins adopt a single stable fold, a few proteins can rapidly interconvert between one or more folds. These are referred to as metamorphic proteins. [5]
A hairpin is a special case of a turn, in which the direction of the protein backbone reverses and the flanking secondary structure elements interact. For example, a beta hairpin connects two hydrogen-bonded , antiparallel β-strands (a rather confusing name, since a β-hairpin may contain many types of turns – α, β, γ, etc.).
Generally, the carbohydrate part(s) play an integral role in the function of a glycoconjugate; prominent examples of this are neural cell adhesion molecule (NCAM) and blood proteins where fine details in the carbohydrate structure determine cell binding (or not) or lifetime in circulation.