Search results
Results from the WOW.Com Content Network
Alternatively, the equality can be justified by multiplying the power series on the left by 1 − x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no other power series with this property.
Probability generating functions are often employed for their succinct description of the sequence of probabilities Pr(X = i) in the probability mass function for a random variable X, and to make available the well-developed theory of power series with non-negative coefficients.
The order of the power series f is defined to be the least value such that there is a α ≠ 0 with = | | = + + +, or if f ≡ 0. In particular, for a power series f ( x ) in a single variable x , the order of f is the smallest power of x with a nonzero coefficient.
the multiplicative order, that is, the number of times the polynomial is divisible by some value; the order of the polynomial considered as a power series, that is, the degree of its non-zero term of lowest degree; or; the order of a spline, either the degree+1 of the polynomials defining the spline or the number of knot points used to ...
Firstly, if a < 0, the change of variable x → –x allows supposing a > 0. After this change of variable, the new graph is the mirror image of the previous one, with respect of the y-axis. Then, the change of variable x = x 1 – b / 3a provides a function of the form = + +.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In 2017, it was proven [15] that there exists a unique function F which is a solution of the equation F(z + 1) = exp(F(z)) and satisfies the additional conditions that F(0) = 1 and F(z) approaches the fixed points of the logarithm (roughly 0.318 ± 1.337i) as z approaches ±i∞ and that F is holomorphic in the whole complex z-plane, except the ...
A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).