Search results
Results from the WOW.Com Content Network
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.
Near Earth's surface, the acceleration due to gravity, accurate to 2 significant figures, is 9.8 m/s 2 (32 ft/s 2). This means that, ignoring the effects of air resistance , the speed of an object falling freely will increase by about 9.8 metres per second (32 ft/s) every second.
F 21 is the force applied on body 2 exerted by body 1, G is the gravitational constant, m 1 and m 2 are respectively the masses of bodies 1 and 2, r 21 = r 2 − r 1 is the displacement vector between bodies 1 and 2, and
Equation [3] involves the average velocity v + v 0 / 2 . Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...
For example, as the Earth's rotational velocity is 465 m/s at the equator, a rocket launched tangentially from the Earth's equator to the east requires an initial velocity of about 10.735 km/s relative to the moving surface at the point of launch to escape whereas a rocket launched tangentially from the Earth's equator to the west requires an ...
r is the distance between the two bodies' centers of mass; a is the length of the semi-major axis (a > 0 for ellipses, a = ∞ or 1/a = 0 for parabolas, and a < 0 for hyperbolas) G is the gravitational constant; M is the mass of the central body; The product of GM can also be expressed as the standard gravitational parameter using the Greek ...
μ = Gm 1 + Gm 2 = μ 1 + μ 2, where m 1 and m 2 are the masses of the two bodies. Then: for circular orbits, rv 2 = r 3 ω 2 = 4π 2 r 3 /T 2 = μ; for elliptic orbits, 4π 2 a 3 /T 2 = μ (with a expressed in AU; T in years and M the total mass relative to that of the Sun, we get a 3 /T 2 = M) for parabolic trajectories, rv 2 is constant and ...