enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    Heteroskedasticity-consistent standard errors are used to allow the fitting of a model that does contain heteroskedastic residuals. The first such approach was proposed by Huber (1967), and further improved procedures have been produced since for cross-sectional data, time-series data and GARCH estimation.

  3. Heckman correction - Wikipedia

    en.wikipedia.org/wiki/Heckman_correction

    The resulting likelihood function is mathematically similar to the tobit model for censored dependent variables, a connection first drawn by James Heckman in 1974. [2] Heckman also developed a two-step control function approach to estimate this model, [ 3 ] which avoids the computational burden of having to estimate both equations jointly ...

  4. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics , a sequence of random variables is homoscedastic ( / ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k / ) if all its random variables have the same finite variance ; this is also known as homogeneity of variance .

  5. Homogeneity and heterogeneity (statistics) - Wikipedia

    en.wikipedia.org/wiki/Homogeneity_and...

    Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics , a sequence of random variables is homoscedastic ( / ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k / ) if all its random variables have the same finite variance ; this is also known as homogeneity of variance.

  6. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In Julia, the CovarianceMatrices.jl package [11] supports several types of heteroskedasticity and autocorrelation consistent covariance matrix estimation including Newey–West, White, and Arellano. In R , the packages sandwich [ 6 ] and plm [ 12 ] include a function for the Newey–West estimator.

  7. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    If the data exhibit a trend, the regression model is likely incorrect; for example, the true function may be a quadratic or higher order polynomial. If they are random, or have no trend, but "fan out" - they exhibit a phenomenon called heteroscedasticity. If all of the residuals are equal, or do not fan out, they exhibit homoscedasticity.

  8. Glejser test - Wikipedia

    en.wikipedia.org/wiki/Glejser_test

    Step 3: Select the equation with the highest R 2 and lowest standard errors to represent heteroscedasticity. Step 4: Perform a t-test on the equation selected from step 3 on γ 1. If γ 1 is statistically significant, reject the null hypothesis of homoscedasticity.

  9. Autoregressive conditional heteroskedasticity - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_conditional...

    Generally, when testing for heteroskedasticity in econometric models, the best test is the White test. However, when dealing with time series data, this means to test for ARCH and GARCH errors. Exponentially weighted moving average (EWMA) is an alternative model in a separate class of exponential smoothing models. As an alternative to GARCH ...