Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version; In other projects ... This is the formula for time dilation: ... Special relativity; General relativity; List of physics formulae;
Hendrik Lorentz and Henri Poincaré developed their version of special relativity in a series of papers from about 1900 to 1905. They used Maxwell's equations and the principle of relativity to deduce a theory that is mathematically equivalent to the theory later developed by Einstein.
Translation by George Barker Jeffery and Wilfrid Perrett in The Principle of Relativity, London: Methuen and Company, Ltd. (1923). :Used the newly formulated theory of special relativity to introduce the mass energy formula. One of the Annus Mirabilis papers.
The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.
In fluid mechanics and astrophysics, the relativistic Euler equations are a generalization of the Euler equations that account for the effects of general relativity.They have applications in high-energy astrophysics and numerical relativity, where they are commonly used for describing phenomena such as gamma-ray bursts, accretion phenomena, and neutron stars, often with the addition of a ...
A discrete version of the Einstein–Hilbert action is obtained by considering so-called deficit angles of these blocks, a zero deficit angle corresponding to no curvature. This novel idea finds application in approximation methods in numerical relativity and quantum gravity , the latter using a generalisation of Regge calculus.
1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field.