Search results
Results from the WOW.Com Content Network
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio.
[1]: 2 These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946. The ordinal scale is distinguished from the nominal scale by having a ranking. [2] It also differs from the interval scale and ratio scale by not having category widths that represent equal increments of the underlying attribute. [3]
Nominal data is often compared to ordinal and ratio data to determine if individual data points influence the behavior of quantitatively driven datasets. [1] [4] For example, the effect of race (nominal) on income (ratio) could be investigated by regressing the level of income upon one or more dummy variables that specify race. When nominal ...
This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables. General tests [ edit ]
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An example is a preference ranking. Some data are measured at the interval level. Numbers indicate the magnitude of difference between items, but there is no absolute zero point. Examples are attitude scales and opinion scales. Some data are measured at the ratio level. Numbers indicate magnitude of difference and there is a fixed zero point.
Data analysis is a process for obtaining raw data, and subsequently converting it into information useful for decision-making by users. [1] Data is collected and analyzed to answer questions, test hypotheses, or disprove theories. [11] Statistician John Tukey, defined data analysis in 1961, as: