Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
This enzyme has been studied primarily in plants, but it has been studied in some bacteria as well. [1] It is a key enzyme in gluconeogenesis and photosynthesis that is responsible for reversing the reaction performed by pyruvate kinase in Embden-Meyerhof-Parnas glycolysis.
Polyphenol oxidase is an enzyme found throughout the plant and animal kingdoms, [31] including most fruits and vegetables. [32] PPO has importance to the food industry because it catalyzes enzymatic browning when tissue is damaged from bruising, compression or indentations, making the produce less marketable and causing economic loss.
Using the above principles, equations that relate a global protein signal, corresponding to the folding states in equilibrium, and the variable value of a denaturing agent, either temperature or a chemical molecule, have been derived for homomeric and heteromeric proteins, from monomers to trimers and potentially tetramers.
Enzymes that catalyse this reaction are called deaminases. In the human body, deamination takes place primarily in the liver; however, it can also occur in the kidney. In situations of excess protein intake, deamination is used to break down amino acids for energy. The amino group is removed from the amino acid and converted to ammonia.
The enzyme is integrated into thylakoid membrane; the CF 1-part sticks into stroma, where dark reactions of photosynthesis (also called the light-independent reactions or the Calvin cycle) and ATP synthesis take place. The overall structure and the catalytic mechanism of the chloroplast ATP synthase are almost the same as those of the bacterial ...
The nitrate reductase of higher plants, algae, and fungi is a homodimeric cytosolic protein with five conserved domains in each monomer: 1) an Mo-MPT domain that contains the single molybdopterin cofactor, 2) a dimer interface domain, 3) a cytochrome b domain, and 4) an NADH-binding domain that combines with 5) an FAD-binding domain to form the ...
Pectinase enzymes used today are naturally produced by fungi and yeasts (50%), insects, bacteria and microbes (35%) and various plants (15%), [4] but cannot be synthesized by animal or human cells. [5] In plants, pectinase enzymes hydrolyze pectin that is found in the cell wall, allowing for new growth and changes to be made.