Search results
Results from the WOW.Com Content Network
Reinhard Diestel (born 1959) [1] is a German mathematician specializing in graph theory, including the interplay among graph minors, matroid theory, tree decomposition, and infinite graphs. He holds the chair of discrete mathematics at the University of Hamburg .
Archived (PDF) from the original on 2019-05-17. Gibbons, Alan (1985). ... Graph Theory, by Reinhard Diestel This page was last edited on 7 February 2025 ...
A directed cycle graph of length 8. A directed cycle graph is a directed version of a cycle graph, with all the edges being oriented in the same direction. In a directed graph, a set of edges which contains at least one edge (or arc) from each directed cycle is called a feedback arc set.
Graph minor Diestel (2000), [1] p. 107: Outer 1-planar graphs: Six forbidden minors Graph minor Auer et al. (2013) [2] Graphs of fixed genus: A finite obstruction set Graph minor Diestel (2000), [1] p. 275: Apex graphs: A finite obstruction set Graph minor [3] Linklessly embeddable graphs: The Petersen family: Graph minor [4] Bipartite graphs ...
Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts. See, for example, Bondy and Murty (1976), Gibbons (1985), or Diestel (2005). As Dynkin diagrams
A graph that requires four colors in any coloring, and four connected subgraphs that, when contracted, form a complete graph, illustrating the case k = 4 of Hadwiger's conjecture In graph theory , the Hadwiger conjecture states that if G {\displaystyle G} is loopless and has no K t {\displaystyle K_{t}} minor then its chromatic number satisfies ...
In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. [1] A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees. [2]
There are only two (4, 4, 16) graphs (that is, 2-colourings of a complete graph on 16 nodes without 4-node red or blue complete subgraphs) among 6.4 × 10 22 different 2-colourings of 16-node graphs, and only one (4, 4, 17) graph (the Paley graph of order 17) among 2.46 × 10 26 colourings. [4]