enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  3. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    A random sample can be thought of as a set of objects that are chosen randomly. More formally, it is "a sequence of independent, identically distributed (IID) random data points." In other words, the terms random sample and IID are synonymous. In statistics, "random sample" is the typical terminology, but in probability, it is more common to ...

  4. Complex random variable - Wikipedia

    en.wikipedia.org/wiki/Complex_random_variable

    Another example of a complex random variable is the uniform distribution over the filled unit circle, i.e. the set {| |}. This random variable is an example of a complex random variable for which the probability density function is defined. The density function is shown as the yellow disk and dark blue base in the following figure.

  5. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]

  6. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    For example, for A the first of these cells gives the sum of the probabilities for A being red, regardless of which possibility for B in the column above the cell occurs, as ⁠ 2 / 3 ⁠. Thus the marginal probability distribution for A {\displaystyle A} gives A {\displaystyle A} 's probabilities unconditional on B {\displaystyle B} , in a ...

  7. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The general form of its probability density function is [2] [3] = (). The parameter μ {\textstyle \mu } is the mean or expectation of the distribution (and also its median and mode ), while the parameter σ 2 {\textstyle \sigma ^{2}} is the variance .

  8. Copula (statistics) - Wikipedia

    en.wikipedia.org/wiki/Copula_(statistics)

    where (,) is the copula density function, () and () are the marginal probability density functions of X and Y, respectively. There are four elements in this equation, and if any three elements are known, the fourth element can be calculated. For example, it may be used,

  9. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    Centered on each sample, a Gaussian kernel is drawn in gray. Averaging the Gaussians yields the density estimate shown in the dashed black curve. In statistics, probability density estimation or simply density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function. The ...