Search results
Results from the WOW.Com Content Network
The basic rule for divisibility by 4 is that if the number formed by the last two digits in a number is divisible by 4, the original number is divisible by 4; [2] [3] this is because 100 is divisible by 4 and so adding hundreds, thousands, etc. is simply adding another number that is divisible by 4. If any number ends in a two digit number that ...
For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer. Every integer (and its negation) is a divisor of itself. Integers divisible by 2 are called even, and integers not divisible by 2 are called odd.
Divisibility rule; Divisor; Table of divisors; E. Euler's four-square identity; F. ... Text is available under the Creative Commons Attribution-ShareAlike 4.0 License
This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient. Unlike the other basic operations, when dividing natural numbers there is sometimes a remainder that will not go evenly into the dividend; for example, 10 / 3 leaves a remainder of 1, as 10 is not a multiple of 3.
In arithmetic, for example, when multiplying by 9, using the divisibility rule for 9 to verify that the sum of digits of the result is divisible by 9 is a sanity test—it will not catch every multiplication error, but is a quick and simple method to discover many possible errors.
The following laws can be verified using the properties of divisibility. They are a special case of rules in modular arithmetic, and are commonly used to check if an equality is likely to be correct by testing the parity of each side. As with ordinary arithmetic, multiplication and addition are commutative and associative in modulo 2 arithmetic ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Two properties of 1001 are the basis of a divisibility test for 7, 11 and 13. The method is along the same lines as the divisibility rule for 11 using the property 10 ≡ -1 (mod 11). The two properties of 1001 are 1001 = 7 × 11 × 13 in prime factors 10 3 ≡ -1 (mod 1001) The method simultaneously tests for divisibility by any of the factors ...