enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greedy algorithm for Egyptian fractions - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm_for...

    Every fraction2 / y ⁠ requires two terms in its greedy expansion if and only if y ≡ 1 (mod 2); the simplest such fraction is ⁠ 2 / 3 ⁠. A fraction3 / y ⁠ requires three terms in its greedy expansion if and only if y ≡ 1 (mod 6), for then −y mod x = 2 and ⁠ y(y + 2) / 3 ⁠ is odd, so the fraction remaining after a ...

  3. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 22, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two , e.g. ⁠ 1 / 8 ⁠ = ⁠ 1 / 2 3 ⁠ .

  4. Farey sequence - Wikipedia

    en.wikipedia.org/wiki/Farey_sequence

    Thus the first term to appear between ⁠ 1 / 3 ⁠ and ⁠ 2 / 5 ⁠ is ⁠ 3 / 8 ⁠, which appears in F 8. The total number of Farey neighbour pairs in F n is 2| F n | − 3. The Stern–Brocot tree is a data structure showing how the sequence is built up from 0 (= ⁠ 0 / 1 ⁠) and 1 (= ⁠ 1 / 1 ⁠), by taking successive mediants.

  5. Clearing denominators - Wikipedia

    en.wikipedia.org/wiki/Clearing_denominators

    The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0 , a mathematical truth. But the same substitution applied to the original equation results in x /6 + 0/0 = 1 , which is mathematically meaningless .

  6. Lentz's algorithm - Wikipedia

    en.wikipedia.org/wiki/Lentz's_algorithm

    The idea was introduced in 1973 by William J. Lentz [1] and was simplified by him in 1982. [4] Lentz suggested that calculating ratios of spherical Bessel functions of complex arguments can be difficult. He developed a new continued fraction technique for calculating the ratios of spherical Bessel functions of consecutive order.

  7. Egyptian fraction - Wikipedia

    en.wikipedia.org/wiki/Egyptian_fraction

    For instance, the primary pseudoperfect number 1806 is the product of the prime numbers 2, 3, 7, and 43, and gives rise to the Egyptian fraction 1 = ⁠ 1 / 2 ⁠ + ⁠ 1 / 3 ⁠ + ⁠ 1 / 7 ⁠ + ⁠ 1 / 43 ⁠ + ⁠ 1 / 1806 ⁠.

  8. Fractional factorial design - Wikipedia

    en.wikipedia.org/wiki/Fractional_factorial_design

    Each generator halves the number of runs required. A design with p such generators is a 1/(l p)=l −p fraction of the full factorial design. [3] For example, a 2 5 − 2 design is 1/4 of a two-level, five-factor factorial design. Rather than the 32 runs that would be required for the full 2 5 factorial experiment, this experiment requires only ...

  9. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    In the second step, they were divided by 3. The final result, ⁠ 4 / 3 ⁠, is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30.