enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Strength reduction - Wikipedia

    en.wikipedia.org/wiki/Strength_reduction

    replacing integer multiplication by a constant with a combination of shifts, adds or subtracts; replacing integer division by a constant with a multiplication, taking advantage of the limited range of machine integers. [3] This method also works if divisor is a non-integer sufficiently greater than 1, e.g. √2 or π. [4]

  3. Hadamard transform - Wikipedia

    en.wikipedia.org/wiki/Hadamard_transform

    The Hadamard transform H m is a 2 m × 2 m matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2 m real numbers x n into 2 m real numbers X k.The Hadamard transform can be defined in two ways: recursively, or by using the binary (base-2) representation of the indices n and k.

  4. Barrett reduction - Wikipedia

    en.wikipedia.org/wiki/Barrett_reduction

    The Barrett multiplication previously described requires a constant operand b to pre-compute [] ahead of time. Otherwise, the operation is not efficient. Otherwise, the operation is not efficient. It is common to use Montgomery multiplication when both operands are non-constant as it has better performance.

  5. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.

  6. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  7. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    The Montgomery form, in contrast, depends on a constant R > N which is coprime to N, and the only division necessary in Montgomery multiplication is division by R. The constant R can be chosen so that division by R is easy, significantly improving the speed of the algorithm.

  8. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The optimal number of field operations needed to multiply two square n × n matrices up to constant factors is still unknown. This is a major open question in theoretical computer science . As of January 2024 [update] , the best bound on the asymptotic complexity of a matrix multiplication algorithm is O( n 2.371552 ) .

  9. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.