Search results
Results from the WOW.Com Content Network
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).
The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy , it usually applies to planets or asteroids orbiting the Sun , moons orbiting planets, exoplanets orbiting other stars , or binary stars .
Rotation period days: 25.38 Orbital period about Galactic Center [4] million years 225–250 Mean orbital speed [4] km/s: ≈ 220 Axial tilt to the ecliptic: deg. 7.25 Axial tilt to the galactic plane: deg. 67.23 Mean surface temperature: K: 5,778 Mean coronal temperature [5] K: 1–2 × 10 6: Photospheric composition H, He, O, C, Fe, S
Another common form of resonance in the Solar System is spin–orbit resonance, where the rotation period (the time it takes the planet or moon to rotate once about its axis) has a simple numerical relationship with its orbital period. An example is the Moon, which is in a 1:1 spin–orbit resonance that keeps its far side away from
The region between 40 and 42 AU is an example. [147] There do exist orbits within these empty regions where objects can survive for the age of the Solar System. These resonances occur when Neptune's orbital period is a precise fraction of that of the object, such as 1:2, or 3:4. If, say, an object orbits the Sun once for every two Neptune ...
For example: q= 3×(length of Mars) + 2×(length of Jupiter). (The term 'length' in this context refers to the ecliptic longitude, that is the angle over which the planet has progressed in its orbit in unit time, so q is an angle over time too. The time needed for the length to increase over 360° is equal to the revolution period.)
The function θ = f(M) is, however, not elementary. [33] Kepler's solution is to use =, x as seen from the centre, the eccentric anomaly as an intermediate variable, and first compute E as a function of M by solving Kepler's equation below, and then compute the true anomaly θ from the eccentric anomaly E. Here are the details.
Mercury, the closest planet to the Sun at 0.4 astronomical units (AU), takes 88 days for an orbit, but the smallest known orbits of exoplanets have orbital periods of only a few hours, see Ultra-short period planet. The Kepler-11 system has five of its planets in smaller orbits than Mercury's.