Search results
Results from the WOW.Com Content Network
Water retention curve is the relationship between the water content, θ, and the soil water potential, ψ. The soil moisture curve is characteristic for different types of soil, and is also called the soil moisture characteristic. It is used to predict the soil water storage, water supply to the plants (field capacity) and soil aggregate stability.
The maximum rate at that water can enter soil in a given condition is the infiltration capacity. If the arrival of the water at the soil surface is less than the infiltration capacity, it is sometimes analyzed using hydrology transport models, mathematical models that consider infiltration, runoff, and channel flow to predict river flow rates ...
Summary of hydrologic and physical properties of rock and soil materials as analyzed by the Hydrologic Laboratory of the U.S. Geological Survey 1948-1960. U.S. Geological Survey Water Supply Paper 1839-D. 42 p. De Wiest, R. J. (1966). On the storage coefficient and the equations of groundwater flow. Journal of Geophysical Research, 71(4), 1117 ...
the rate of rise of the water level in the hole is recorded; the K-value is calculated from the data as: [8] = where: K is the horizontal saturated hydraulic conductivity (m/day) H is the depth of the water level in the hole relative to the water table in the soil (cm): H t = H at time t; H o = H at time t = 0
If the water table is at depth d w in fine-grained soils, then the pore pressure at the ground surface is: [4] =, where: p g is the unsaturated pore water pressure (Pa) at ground level, g w is the unit weight of water (kN/m 3), = / d w is the depth of the water table (m),
Pores (the spaces that exist between soil particles) provide for the passage and/or retention of gasses and moisture within the soil profile.The soil's ability to retain water is strongly related to particle size; water molecules hold more tightly to the fine particles of a clay soil than to coarser particles of a sandy soil, so clays generally retain more water. [2]
the discharge rate (Q) from the recharge rate (R) in a water balance as detailed in the article: hydrology (agriculture) the permissible long term average depth of the water table (Dw) on the basis of agricultural drainage criteria; the soil's hydraulic conductivity (Ka and Kb) by measurements; the depth of the bottom of the aquifer (Di)
Buffer capacity falls to 33% of the maximum value at pH = pK a ± 1, to 10% at pH = pK a ± 1.5 and to 1% at pH = pK a ± 2. For this reason the most useful range is approximately pK a ± 1. When choosing a buffer for use at a specific pH, it should have a pK a value as close as possible to that pH. [2]