Search results
Results from the WOW.Com Content Network
The lower weighted median is 2 with partition sums of 0.49 and 0.5, and the upper weighted median is 3 with partition sums of 0.5 and 0.25. In the case of working with integers or non-interval measures, the lower weighted median would be accepted since it is the lower weight of the pair and therefore keeps the partitions most equal. However, it ...
The median of three vertices in a tree, showing the subtree formed by the union of shortest paths between the vertices. Every tree is a median graph. To see this, observe that in a tree, the union of the three shortest paths between pairs of the three vertices a, b, and c is either itself a path, or a subtree formed by three paths meeting at a single central node with degree three.
[2]: 188 For example: if all y values are constant, the estimator with unknown population size will give the correct result, while the one with known population size will have some variability. Also, when the sample size itself is random (e.g.: in Poisson sampling ), the version with unknown population mean is considered more stable.
The median graph representing all solutions to the example 2-satisfiability instance whose implication graph is shown above. The set of all solutions to a 2-satisfiability instance has the structure of a median graph , in which an edge corresponds to the operation of flipping the values of a set of variables that are all constrained to be equal ...
A median graph is an undirected graph in which for every three vertices , , and there is a unique vertex ,, that belongs to shortest paths between any two of , , and . If this is the case, then the operation x , y , z {\displaystyle \langle x,y,z\rangle } defines a median algebra having the vertices of the graph as its elements.
The idea of the kernel average smoother is the following. For each data point X 0, choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than to X 0 (the closer to X 0 points get higher weights).
As regards weighting, one can either weight all of the measured ages equally, or weight them by the proportion of the sample that they represent. For example, if two thirds of the sample was used for the first measurement and one third for the second and final measurement, then one might weight the first measurement twice that of the second.
Weighted means are commonly used in statistics to compensate for the presence of bias.For a quantity measured multiple independent times with variance, the best estimate of the signal is obtained by averaging all the measurements with weight = /, and the resulting variance is smaller than each of the independent measurements = /.