Search results
Results from the WOW.Com Content Network
In either case, one needs to choose the three lattice vectors a 1, a 2, and a 3 that define the unit cell (note that the conventional unit cell may be larger than the primitive cell of the Bravais lattice, as the examples below illustrate). Given these, the three primitive reciprocal lattice vectors are also determined (denoted b 1, b 2, and b 3).
The computer-generated reciprocal lattice of a fictional monoclinic 3D crystal. A two-dimensional crystal and its reciprocal lattice. The reciprocal lattice is a term associated with solids with translational symmetry, and plays a major role in many areas such as X-ray and electron diffraction as well as the energies of electrons in a solid.
Another helpful ingredient in the proof is the reciprocal lattice vectors. These are three vectors b 1, b 2, b 3 (with units of inverse length), with the property that a i · b i = 2π, but a i · b j = 0 when i ≠ j. (For the formula for b i, see reciprocal lattice vector.)
Vectors and planes in a crystal lattice are described by the three-value Miller index notation. This syntax uses the indices h, k, and â„“ as directional parameters. [4] By definition, the syntax (hkâ„“) denotes a plane that intercepts the three points a 1 /h, a 2 /k, and a 3 /â„“, or some multiple thereof. That is, the Miller indices are ...
The boundaries of this cell are given by planes related to points on the reciprocal lattice. The importance of the Brillouin zone stems from the description of waves in a periodic medium given by Bloch's theorem, in which it is found that the solutions can be completely characterized by their behavior in a single Brillouin zone.
The Laue equations can be written as = = as the condition of elastic wave scattering by a crystal lattice, where is the scattering vector, , are incoming and outgoing wave vectors (to the crystal and from the crystal, by scattering), and is a crystal reciprocal lattice vector.
The interaction between the scatterers present in the surface and the incident electrons is most conveniently described in reciprocal space. In three dimensions the primitive reciprocal lattice vectors are related to the real space lattice {a, b, c} in the following way: [12]
The translational invariance of a crystal lattice is described by a set of unit cell, direct lattice basis vectors (contravariant [1] or polar) called a, b, and c, or equivalently by the lattice parameters, i.e. the magnitudes of the vectors, called a, b and c, and the angles between them, called α (between b and c), β (between c and a), and γ (between a and b).