Search results
Results from the WOW.Com Content Network
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
The optimal number of field operations needed to multiply two square n × n matrices up to constant factors is still unknown. This is a major open question in theoretical computer science . As of January 2024 [update] , the best bound on the asymptotic complexity of a matrix multiplication algorithm is O( n 2.371552 ) .
Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes a set of low-level routines for performing common linear algebra operations such as vector addition, scalar multiplication, dot products, linear combinations, and matrix multiplication.
Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.
Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation. These can be of quite general use, for example in modular arithmetic or powering of matrices. For semigroups for which additive notation is commonly used, like elliptic curves used in cryptography , this method is also referred to as double-and-add .
The implementation is efficient. It can be configured to use the GNU Multi-Precision Library as kernel for speed-critical inner loops and implements advanced algorithms like Schönhage–Strassen multiplication, binary splitting [1] for computing certain mathematical constants and others.
Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.