Search results
Results from the WOW.Com Content Network
The Penrose method (or square-root method) is a method devised in 1946 by Professor Lionel Penrose [1] for allocating the voting weights of delegations (possibly a single representative) in decision-making bodies proportional to the square root of the population represented by this delegation.
For instance, if sales increases by 80% in one year and the next year by 25%, the result is the same as that of a constant growth rate of 50%, since the geometric mean of 1.80 and 1.25 is 1.50. In order to determine the average growth rate, it is not necessary to take the product of the measured growth rates at every step.
While the standard deviation does measure how far typical values tend to be from the mean, other measures are available. An example is the mean absolute deviation, which might be considered a more direct measure of average distance, compared to the root mean square distance inherent in the standard deviation.
The Pareto principle may apply to fundraising, i.e. 20% of the donors contributing towards 80% of the total. The Pareto principle (also known as the 80/20 rule, the law of the vital few and the principle of factor sparsity [1] [2]) states that for many outcomes, roughly 80% of consequences come from 20% of causes (the "vital few").
The relation between and are given by the following table, where the values for DRMS and 2DRMS (twice the distance root mean square) are specific to the Rayleigh distribution and are found numerically, while the CEP, R95 (95% radius) and R99.7 (99.7% radius) values are defined based on the 68–95–99.7 rule
From January 2008 to April 2011, if you bought shares in companies when Robert N. Burt joined the board, and sold them when he left, you would have a -8.5 percent return on your investment, compared to a -7.3 percent return from the S&P 500.
An example of how is used is to make confidence intervals of the unknown population mean. If the sampling distribution is normally distributed , the sample mean, the standard error, and the quantiles of the normal distribution can be used to calculate confidence intervals for the true population mean.
Graphs of probabilities of getting the best candidate (red circles) from n applications, and k/n (blue crosses) where k is the sample size. The secretary problem demonstrates a scenario involving optimal stopping theory [1] [2] that is studied extensively in the fields of applied probability, statistics, and decision theory.