Search results
Results from the WOW.Com Content Network
Myocardial contractility represents the innate ability of the heart muscle (cardiac muscle or myocardium) to contract.It is the maximum attainable value for the force of contraction of a given heart.
Contraction that squeezes blood towards the exit is more efficient than a simple squeeze from all directions. Although the ventricular stimulus originates from the AV node in the wall separating the atria and ventricles, the Bundle of His conducts the signal to the apex. Depolarization propagates through cardiac muscle very rapidly.
The cardiac cycle is the performance of the human heart from the beginning of one heartbeat to the beginning of the next. [1] It consists of two periods: one during which the heart muscle relaxes and refills with blood, called diastole, following a period of robust contraction and pumping of blood, called systole. [1]
The cells that make up the SA node are specialized cardiomyocytes known as pacemaker cells that can spontaneously generate cardiac action potentials. These signals are propagated through the heart's electrical conduction system. [1] [2] Only one percent of the heart muscle cells are conductive, the rest of the cardiomyocytes are contractile.
First, atrial contraction feeds blood into the ventricles, then ventricular contraction pumps blood out of the heart to the body systems, including the lungs for resupply of oxygen. Cardiac systole is the contraction of the cardiac muscle in response to an electrochemical stimulus to the heart's cells (cardiomyocytes).
The period of time that begins with contraction of the atria and ends with ventricular relaxation is known as the cardiac cycle. The period of contraction that the heart undergoes while it pumps blood into circulation is called systole. The period of relaxation that occurs as the chambers fill with blood is called diastole.
Cardiac excitation-contraction coupling (Cardiac EC coupling) describes the series of events, from the production of an electrical impulse (action potential) to the contraction of muscles in the heart. [1] This process is of vital importance as it allows for the heart to beat in a controlled manner, without the need for conscious input.
During contraction of a cardiac muscle cell, the long protein myofilaments oriented along the length of the cell slide over each other in what is known as the sliding filament theory. There are two kinds of myofilaments, thick filaments composed of the protein myosin , and thin filaments composed of the proteins actin , troponin and tropomyosin .