enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factor of safety - Wikipedia

    en.wikipedia.org/wiki/Factor_of_safety

    In engineering, a factor of safety (FoS) or safety factor (SF) expresses how much stronger a system is than it needs to be for an intended load.Safety factors are often calculated using detailed analysis because comprehensive testing is impractical on many projects, such as bridges and buildings, but the structure's ability to carry a load must be determined to a reasonable accuracy.

  3. Working load limit - Wikipedia

    en.wikipedia.org/wiki/Working_load_limit

    The factor can be as high as 10:1 or 10 to 1, if the equipment poses a risk to a person's life. Working Load Limit (WLL) is the maximum working load designed by the manufacturer. This load represents a force that is much less than that required to make the lifting equipment fail or yield. The WLL is calculated by dividing MBL by a safety factor (SF

  4. Permissible stress design - Wikipedia

    en.wikipedia.org/wiki/Permissible_stress_design

    The "factor" is sometimes called a factor of safety, although this is technically incorrect because the factor includes allowance for matters such as local stresses and manufacturing imperfections that are not specifically calculated; exceeding the allowable values is not considered to be good practice (i.e. is not "safe").

  5. Bearing capacity - Wikipedia

    en.wikipedia.org/wiki/Bearing_capacity

    Calculation of the capacity of the footing in general bearing is based on the size of the footing and the soil properties. The basic method was developed by Terzaghi, with modifications and additional factors by Meyerhof and Vesić. . The general shear failure case is the one normally analyzed.

  6. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    Margin of Safety is the common method for design criteria. It is defined MS = P u /P − 1. For example, to achieve a factor of safety of 4, the allowable stress in an AISI 1018 steel component can be calculated to be = / = 440/4 = 110 MPa, or = 110×10 6 N/m 2. Such allowable stresses are also known as "design stresses" or "working stresses".

  7. Failure rate - Wikipedia

    en.wikipedia.org/wiki/Failure_rate

    The design strength (de-rating, safety factors) and; The operational profile (environmental stress factors). Given a component database calibrated with field failure data that is reasonably accurate [1], the method can predict product level failure rate and failure mode data for a given application.

  8. Limit state design - Wikipedia

    en.wikipedia.org/wiki/Limit_state_design

    A clear distinction is made between the ultimate state (US) and the ultimate limit state (ULS). The Ultimate State is a physical situation that involves either excessive deformations leading and approaching collapse of the component under consideration or the structure as a whole, as relevant, or deformations exceeding pre-agreed values.

  9. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    The factor of safety on ultimate tensile strength is to prevent sudden fracture and collapse, which would result in greater economic loss and possible loss of life. An aircraft wing might be designed with a factor of safety of 1.25 on the yield strength of the wing and a factor of safety of 1.5 on its ultimate strength.