Search results
Results from the WOW.Com Content Network
The term tractive effort is often qualified as starting tractive effort, continuous tractive effort and maximum tractive effort.These terms apply to different operating conditions, but are related by common mechanical factors: input torque to the driving wheels, the wheel diameter, coefficient of friction (μ) between the driving wheels and supporting surface, and the weight applied to the ...
Traction can also refer to the maximum tractive force between a body and a surface, as limited by available friction; when this is the case, traction is often expressed as the ratio of the maximum tractive force to the normal force and is termed the coefficient of traction (similar to coefficient of friction).
An exception is if the tractive effort is so high that the wheel is close to substantial slipping (more than just a few percent as discussed above), then slip rapidly increases with tractive effort and is no longer linear. With a little higher applied tractive effort the wheel spins out of control and the adhesion drops resulting in the wheel ...
Drawbar pull is the difference between tractive effort available and tractive effort required to overcome resistance at a specified speed. Drawbar pull data for a vehicle is usually determined by measuring the amount of available tractive force using a dynamometer , and then combining that data with coastdown [ 1 ] data to obtain the available ...
Baldwin conceived the type as an expansion of the 2-6-6-2 permitting a greater tractive effort. The next order for the type was from the Southern Pacific; these differed in being cab forward locomotives, so that the crew could have better visibility and breathing in the SP's long tunnels and snow sheds.
A proportion of the reciprocating weight is balanced with the addition of an extra revolving weight in the wheel, i.e. still only balanced statically. The overbalance causes what is known as hammer blow or dynamic augment, both terms having the same definition as given in the following references.
The coefficients for these equations are determined with experiments by measuring the tractive effort from the locomotive at different constant speeds or with a coasting experiments (the rail vehicle is set in motion at a certain speed and then the traction is disengaged, causing the vehicle to stop due to resistance). [6]
The steam locomotive, as commonly employed, has its pistons directly attached to cranks on the driving wheels; thus, there is no gearing, one revolution of the driving wheels is equivalent to one revolution of the crank and thus two power strokes per piston (steam locomotives are almost universally double-acting, unlike the more familiar internal combustion engine).