Search results
Results from the WOW.Com Content Network
In probability theory, a probability space or a probability triple (,,) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements: [1] [2]
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. [1] [2] The theory of random graphs lies at the intersection between graph theory and probability theory.
Transition graph with transition probabilities, exemplary for the states 1, 5, 6 and 8. There is a bidirectional secret passage between states 2 and 8. The image to the right describes a discrete-time Markov chain modeling Pac-Man with state-space {1,2,3,4,5,6,7,8,9}. The player controls Pac-Man through a maze, eating pac-dots.
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is [ 2 ] [ 3 ] f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 . {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2 ...
However, for a given sequence {X n} which converges in distribution to X 0 it is always possible to find a new probability space (Ω, F, P) and random variables {Y n, n = 0, 1, ...} defined on it such that Y n is equal in distribution to X n for each n ≥ 0, and Y n converges to Y 0 almost surely.
A continuous-time Markov chain (X t) t ≥ 0 is defined by a finite or countable state space S, a transition rate matrix Q with dimensions equal to that of the state space and initial probability distribution defined on the state space.
In probability theory, a tree diagram may be used to represent a probability space. A tree diagram may represent a series of independent events (such as a set of coin flips) or conditional probabilities (such as drawing cards from a deck, without replacing the cards). [ 1 ]
Using the standard formalism of probability theory, let and be two random variables defined on probability spaces (,,) and (,,).Then a coupling of and is a new probability space (,,) over which there are two random variables and such that has the same distribution as while has the same distribution as .