Search results
Results from the WOW.Com Content Network
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]
The elementary charge, usually denoted by e, is a fundamental physical constant, defined as the electric charge carried by a single proton (+1 e) or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 e. [2] [a]
The magnetic moment of the proton was discovered in 1933 by Otto Stern, Otto Robert Frisch and Immanuel Estermann at the University of Hamburg. [15] [16] [17] The proton's magnetic moment was determined by measuring the deflection of a beam of molecular hydrogen by a magnetic field. [18] Stern won the Nobel Prize in Physics in 1943 for this ...
Magnetic poles (or states of polarization at individual points) attract or repel one another in a manner similar to positive and negative charges and always exist as pairs: every north pole is yoked to a south pole. [8] An electric current inside a wire creates a corresponding circumferential magnetic field outside the wire.
A proton is a stable subatomic particle, symbol p, H +, or 1 H + with a positive electric charge of +1 e (elementary charge).Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio).
Electric charges produce electric fields. [2] A moving charge also produces a magnetic field. [3] The interaction of electric charges with an electromagnetic field (a combination of an electric and a magnetic field) is the source of the electromagnetic (or Lorentz) force, [4] which is one of the four fundamental interactions in physics.
The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).
The elementary charge e, i.e. the negative charge on a single electron or the positive charge on a single proton [3] 10 −18: atto-(aC) ~ 1.8755 × 10 −18 C: Planck charge [4] [5] 10 −17: 1.473 × 10 −17 C (92 e) – Positive charge on a uranium nucleus (derived: 92 x 1.602 × 10 −19 C) 10 −16: 1.344 × 10 −16 C: Charge on a dust ...