Search results
Results from the WOW.Com Content Network
A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...
The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive), their transformation properties (i.e. whether the quantity is a scalar, vector, matrix or tensor), and whether the quantity is conserved.
In mathematics and physics, a scalar field is a function associating a single number to each point in a region of space – possibly physical space. The scalar may either be a pure mathematical number ( dimensionless ) or a scalar physical quantity (with units ).
In science, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. [1] [2] [3] An example of a scalar field is a weather map, with the surface temperature described by assigning a number to each point on the map.
In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. [1]
In classical physics, energy is a scalar quantity, the canonical conjugate to time. In special relativity energy is also a scalar (although not a Lorentz scalar but a time component of the energy–momentum 4-vector). [12]
Pages in category "Scalar physical quantities" The following 13 pages are in this category, out of 13 total. ... Work (physics) This page was last ...
For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Quantities that are vectors have, besides numerical value and unit, direction or orientation in space.