Search results
Results from the WOW.Com Content Network
The meso compound must not be confused with a 50:50 racemic mixture of the two optically-active compounds, although neither will rotate light in a polarimeter. It is a requirement for two of the stereocenters in a meso compound to have at least two substituents in common (although having this characteristic does not necessarily mean that the ...
In quasi-enantiomers majority of the molecule is reflected; however, an atom or group within the molecule is changed to a similar atom or group. [34] Quasi-enantiomers can also be defined as molecules that have the potential to become enantiomers if an atom or group in the molecule is replaced. [35]
In chiral molecules containing diastereotopic groups, such as in 2-bromobutane, there is no requirement for enantiomeric or optical purity; no matter its proportion, each enantiomer will generate enantiomeric sets of diastereomers upon substitution of diastereotopic groups (though, as in the case of substitution by bromine in 2-bromobutane ...
As a result, different enantiomers of a compound may have substantially different biological effects. Pure enantiomers also exhibit the phenomenon of optical activity and can be separated only with the use of a chiral agent. In nature, only one enantiomer of most chiral biological compounds, such as amino acids (except glycine, which is achiral ...
Chemical compounds that come as mirror-image pairs are referred to by chemists as chiral or handed molecules. [1] Each twin is called an enantiomer. Drugs that exhibit handedness are referred to as chiral drugs. Chiral drugs that are equimolar (1:1) mixture of enantiomers are called racemic drugs
A meso compound is superposable on its mirror image, therefore it reduces the number of stereoisomers predicted by the 2 n rule. This occurs because the molecule obtains a plane of symmetry that causes the molecule to rotate around the central carbon–carbon bond. [12] One example is meso-tartaric acid, in which (R,S) is the same as the (S,R) form
Enantiomers of a compound with more than one stereocenter are also diastereomers of the other stereoisomers of that compound that are not their mirror image (that is, excluding the opposing enantiomer). Diastereomers have different physical properties (unlike most aspects of enantiomers) and often different chemical reactivity. Diastereomers ...
If two molecules with more than one chiral centre differ in one or more (but not all) centres, they are diastereomers. All stereoisomers that are not enantiomers are diastereomers. Diastereomerism also exists in alkenes. Alkenes are designated Z or E depending on group priority on adjacent carbon atoms. E/Z notation describes the absolute ...