enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Electron_magnetic_moment

    In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]

  3. Muon g-2 - Wikipedia

    en.wikipedia.org/wiki/Muon_g-2

    The next stage of muon g − 2 research was conducted at the Brookhaven National Laboratory (BNL) Alternating Gradient Synchrotron; the experiment was known as (BNL) Muon E821 experiment, [17] but it has also been called "muon experiment at BNL" or "(muon) g − 2 at BNL" etc. [7] Brookhaven's Muon g − 2 experiment was constructed from 1989 to 1996 and collected data from 1997 to 2001.

  4. Magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Magnetic_moment

    For example, any electron's magnetic moment is measured to be −9.284 764 × 10 −24 J/T. [17] The direction of the magnetic moment of any elementary particle is entirely determined by the direction of its spin, with the negative value indicating that any electron's magnetic moment is antiparallel to its spin.

  5. Electron microscope - Wikipedia

    en.wikipedia.org/wiki/Electron_microscope

    Reproduction of an early electron microscope constructed by Ernst Ruska in the 1930s. Many developments laid the groundwork of the electron optics used in microscopes. [2] One significant step was the work of Hertz in 1883 [3] who made a cathode-ray tube with electrostatic and magnetic deflection, demonstrating manipulation of the direction of an electron beam.

  6. Bohr magneton - Wikipedia

    en.wikipedia.org/wiki/Bohr_magneton

    The spin angular momentum of an electron is ⁠ 1 / 2 ⁠ ħ, but the intrinsic electron magnetic moment caused by its spin is also approximately one Bohr magneton, which results in the electron spin g-factor, a factor relating spin angular momentum to corresponding magnetic moment of a particle, having a value of approximately 2. [15]

  7. Orders of magnitude (magnetic moment) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    The magnetic moment of an object is an intrinsic property and does not change with distance, and thus can be used to measure "how strong" a magnet is. For example, Earth possesses an enormous magnetic moment, however we are very distant from its center and experience only a tiny magnetic flux density (measured in tesla ) on its surface.

  8. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    The Transmission Electron Aberration-Corrected Microscope is capable of sub-0.05 nm resolution, which is more than enough to resolve individual atoms. [191] This capability makes the electron microscope a useful laboratory instrument for high resolution imaging. However, electron microscopes are expensive instruments that are costly to maintain.

  9. Precision tests of QED - Wikipedia

    en.wikipedia.org/wiki/Precision_tests_of_QED

    The most precise measurement of α comes from the anomalous magnetic dipole moment, or g−2 (pronounced "g minus 2"), of the electron. [2] To make this measurement, two ingredients are needed: A precise measurement of the anomalous magnetic dipole moment, and; A precise theoretical calculation of the anomalous magnetic dipole moment in terms ...