enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The average kinetic energy then involves the root mean-square velocity, which always exceeds the mean velocity. In the case of turbulent flow , the fluid acquires random velocity components in all directions, including perpendicular to the length of the pipe, and thus turbulence contributes to the kinetic energy per unit volume but not to the ...

  3. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    Disregarding loss or gain however, the sum of the kinetic and potential energy remains constant. Kinetic energy can be passed from one object to another. In the game of billiards, the player imposes kinetic energy on the cue ball by striking it with the cue stick. If the cue ball collides with another ball, it slows down dramatically, and the ...

  4. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure is the kinetic energy per unit volume of a fluid. Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion.

  5. Hydraulic head - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_head

    In fluid dynamics, head is a concept that relates the energy in an incompressible fluid to the height of an equivalent static column of that fluid. From Bernoulli's principle, the total energy at a given point in a fluid is the kinetic energy associated with the speed of flow of the fluid, plus energy from static pressure in the fluid, plus energy from the height of the fluid relative to an ...

  6. Reduced mass - Wikipedia

    en.wikipedia.org/wiki/Reduced_mass

    In a collision with a coefficient of restitution e, the change in kinetic energy can be written as = (), where v rel is the relative velocity of the bodies before collision. For typical applications in nuclear physics, where one particle's mass is much larger than the other the reduced mass can be approximated as the smaller mass of the system.

  7. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    In physics, an elastic collision is an encounter between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net loss of kinetic energy into other forms such as heat, noise, or potential energy.

  8. Losses in steam turbines - Wikipedia

    en.wikipedia.org/wiki/Losses_in_steam_turbines

    In practice, the flow of steam through a nozzle is not isentropic, but accompanied with losses which decrease the kinetic energy of steam coming out of the nozzle. The decrease in kinetic energy is due to: viscous forces between steam particles, heat loss from steam before entering the nozzle, deflection of flow in the nozzle,

  9. Turbulence kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Turbulence_kinetic_energy

    Turbulence kinetic energy is then transferred down the turbulence energy cascade, and is dissipated by viscous forces at the Kolmogorov scale. This process of production, transport and dissipation can be expressed as: D k D t + ∇ ⋅ T ′ = P − ε , {\displaystyle {\frac {Dk}{Dt}}+\nabla \cdot T'=P-\varepsilon ,} where: [ 1 ]