Search results
Results from the WOW.Com Content Network
A general momentum equation is obtained when the conservation relation is applied to momentum. When the intensive property φ is considered as the mass flux (also momentum density), that is, the product of mass density and flow velocity ρu, by substitution into the general continuity equation:
The Navier–Stokes momentum equation can be derived as a particular form of the Cauchy momentum equation, whose general convective form is: = +. By setting the Cauchy stress tensor σ {\textstyle {\boldsymbol {\sigma }}} to be the sum of a viscosity term τ {\textstyle {\boldsymbol {\tau }}} (the deviatoric stress ) and a pressure term − p I ...
The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane, = = ^ the following general results apply to the particle.
These are known as the Navier–Stokes equations. [35] The momentum balance equations can be extended to more general materials, including solids. For each surface with normal in direction i and force in direction j, there is a stress component σ ij. The nine components make up the Cauchy stress tensor σ, which includes both pressure and shear.
Since m 0 does not change from frame to frame, the energy–momentum relation is used in relativistic mechanics and particle physics calculations, as energy and momentum are given in a particle's rest frame (that is, E ′ and p ′ as an observer moving with the particle would conclude to be) and measured in the lab frame (i.e. E and p as ...
With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]
All but the last term of can be written as the tensor divergence of the Maxwell stress tensor, giving: = +, As in the Poynting's theorem, the second term on the right side of the above equation can be interpreted as the time derivative of the EM field's momentum density, while the first term is the time derivative of the momentum density for ...