Search results
Results from the WOW.Com Content Network
In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula ′ where ′ is the derivative of f. [1] Intuitively, this is the infinitesimal relative change in f ; that is, the infinitesimal absolute change in f, namely f ′ , {\displaystyle f',} scaled by the current ...
Complex color plot of the Laguerre polynomial L n(x) with n as -1 divided by 9 and x as z to the power of 4 from -2-2i to 2+2i. In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are nontrivial solutions of Laguerre's differential equation: ″ + ′ + =, = which is a second-order linear differential equation.
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.
It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm , or the logarithm to the base e ) to transform products into sums and divisions into subtractions.
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.
In the calculus of variations, a field of mathematical analysis, the functional derivative (or variational derivative) [1] relates a change in a functional (a functional in this sense is a function that acts on functions) to a change in a function on which the functional depends.
Newton's method is a powerful technique—if the derivative of the function at the root is nonzero, then the convergence is at least quadratic: as the method converges on the root, the difference between the root and the approximation is squared (the number of accurate digits roughly doubles) at each step. However, there are some difficulties ...
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.