Search results
Results from the WOW.Com Content Network
In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in ^ (pronounced "v-hat"). The term normalized vector is sometimes used as a synonym for unit vector. The normalized vector û of a non-zero vector u is the ...
A unit vector is any vector with a length of one; normally unit vectors are used simply to indicate direction. A vector of arbitrary length can be divided by its length to create a unit vector. [14] This is known as normalizing a vector. A unit vector is often indicated with a hat as in â.
Whenever they don't coincide, the inner product is used instead of the dot product in the formal definitions of projection and rejection. For a three-dimensional inner product space, the notions of projection of a vector onto another and rejection of a vector from another can be generalized to the notions of projection of a vector onto a plane ...
In mathematics, a plane is a two-dimensional space or flat surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the ...
In Cartesian space, the norm of a vector is the square root of the vector dotted with itself. That is, ‖ ‖ = Many important results in linear algebra deal with collections of two or more orthogonal vectors. But often, it is easier to deal with vectors of unit length. That is, it often simplifies things to only consider vectors whose norm ...
When V is Euclidean n-space, we can use the inner product to identify the dual space with V itself, making a dyadic tensor an elementary tensor product of two vectors in Euclidean space. In this sense, the unit dyadic ij is the function from 3-space to itself sending a 1 i + a 2 j + a 3 k to a 2 i, and jj sends this sum to a 2 j.
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. [9] Such a drawing is called a plane graph or planar embedding of the graph.
Conversely, it is easily shown that if a, b, c, and d are constants and a, b, and c are not all zero, then the graph of the equation + + + =, is a plane having the vector n = (a, b, c) as a normal. [5] This familiar equation for a plane is called the general form of the equation of the plane or just the plane equation. [6]