enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    The first-order energy shift is not well defined, since there is no unique way to choose a basis of eigenstates for the unperturbed system. The various eigenstates for a given energy will perturb with different energies, or may well possess no continuous family of perturbations at all.

  3. Isotopic shift - Wikipedia

    en.wikipedia.org/wiki/Isotopic_shift

    Using perturbation theory, the first-order energy shift can be calculated as = >, which requires the knowledge of accurate many-electron wave function. Due to the 1 / M N {\displaystyle 1/M_{N}} term in the expression, the specific mass shift also decrease as 1 / M N 2 {\displaystyle 1/M_{N}^{2}} as mass of nucleus increase, same as normal mass ...

  4. Stark effect - Wikipedia

    en.wikipedia.org/wiki/Stark_effect

    The first-order perturbation matrix on basis of the unperturbed rigid rotor function is non-zero and can be diagonalized. This gives shifts and splittings in the rotational spectrum. Quantitative analysis of these Stark shift yields the permanent electric dipole moment of the symmetric top molecule.

  5. Quantum-confined Stark effect - Wikipedia

    en.wikipedia.org/wiki/Quantum-confined_Stark_effect

    The downward shift in the confined energy level discussed in the above equation is referred to as the Franz-Keldysh effect. The approximations made so far are quite crude, nonetheless the energy shift does show experimentally a square law dependence from the applied electric field, [ 5 ] as predicted.

  6. Zeeman effect - Wikipedia

    en.wikipedia.org/wiki/Zeeman_effect

    This equation is known as the Breit–Rabi formula and is useful for systems with one valence electron in an (= /) level. [ 9 ] [ 10 ] Note that index F {\displaystyle F} in Δ E F = I ± 1 / 2 {\displaystyle \Delta E_{F=I\pm 1/2}} should be considered not as total angular momentum of the atom but as asymptotic total angular momentum .

  7. Fine structure - Wikipedia

    en.wikipedia.org/wiki/Fine_structure

    The fine structure energy corrections can be obtained by using perturbation theory.To perform this calculation one must add three corrective terms to the Hamiltonian: the leading order relativistic correction to the kinetic energy, the correction due to the spin–orbit coupling, and the Darwin term coming from the quantum fluctuating motion or zitterbewegung of the electron.

  8. Translation operator (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Translation_operator...

    The method consists of considering an infinitesimal action on a wavefunction, and expanding the transformed wavefunction as a sum of the initial wavefunction and a first-order perturbative correction; and then expressing a finite translation as a huge number of consecutive tiny translations, and then use the fact that infinitesimal translations ...

  9. Landau theory - Wikipedia

    en.wikipedia.org/wiki/Landau_theory

    To further demonstrate that the transition is first-order, one can show that the free energy for this order parameter is continuous at the transition temperature , but its first derivative (the entropy) suffers from a discontinuity, reflecting the existence of a non-zero latent heat.