Search results
Results from the WOW.Com Content Network
Standard Model of Particle Physics. The diagram shows the elementary particles of the Standard Model (the Higgs boson, the three generations of quarks and leptons, and the gauge bosons), including their names, masses, spins, charges, chiralities, and interactions with the strong, weak and electromagnetic forces.
The model is inconsistent with the emerging Lambda-CDM model of cosmology. Contentions include the absence of an explanation in the Standard Model of particle physics for the observed amount of cold dark matter (CDM) and its contributions to dark energy, which are many orders of magnitude too large.
Since then, the particle has been shown to behave, interact, and decay in many of the ways predicted for Higgs particles by the Standard Model, as well as having even parity and zero spin, two fundamental attributes of a Higgs boson. This also means it is the first elementary scalar particle discovered in nature.
The Standard Model of particle physics contains 12 flavors of elementary fermions, plus their corresponding antiparticles, as well as elementary bosons that mediate the forces and the Higgs boson, which was reported on July 4, 2012, as having been likely detected by the two main experiments at the Large Hadron Collider (ATLAS and CMS). [1]
Finally, the Standard Model also predicted the existence of a type of boson known as the Higgs boson. On 4 July 2012, physicists with the Large Hadron Collider at CERN announced they had found a new particle that behaves similarly to what is expected from the Higgs boson. [9] The Standard Model, as currently formulated, has 61 elementary ...
For premium support please call: 800-290-4726 more ways to reach us
The other three are discrete quantum fields, and their interactions are mediated by elementary particles described by the Standard Model of particle physics. [2] Within the Standard Model, the strong interaction is carried by a particle called the gluon and is responsible for quarks binding together to form hadrons, such as protons and neutrons.
For premium support please call: 800-290-4726 more ways to reach us