Search results
Results from the WOW.Com Content Network
Thermal neutrons are used to maintain a nuclear chain reaction in a nuclear reactor, and as a research tool in neutron scattering experiments and other applications of neutron science (see below). The remainder of this article concentrates on the scattering of thermal neutrons.
Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides information of the structure of the material.
Inelastic neutron scattering observes the change in the energy and wavevector of the neutron as it scatters from a sample. [1] This can be used to probe a wide variety of different physical phenomena such as the motions of atoms (diffusional or hopping), the rotational modes of molecules, sound modes and molecular vibrations , recoil in quantum ...
In neutron scattering, neutrons interact with nuclei and the interaction depends on the isotope; some light elements like deuterium show similar scattering cross section as heavy elements like Pb. In zero order dynamical theory of diffraction the refractive index is directly related to the scattering length density and is a measure of the ...
Reactions with neutrons are important in nuclear reactors and nuclear weapons. While the best-known neutron reactions are neutron scattering, neutron capture, and nuclear fission, for some light nuclei (especially odd-odd nuclei) the most probable reaction with a thermal neutron is a transfer reaction:
Fast neutrons are often detected by first moderating (slowing) them to thermal energies. However, during that process the information on the original energy of the neutron, its direction of travel, and the time of emission is lost. For many applications, the detection of "fast" neutrons that retain this information is highly desirable. [64]
Neutron scattering allows scientists to count scattered neutrons, measure their energies and the angles at which they scatter, and map their final positions. This information can reveal the molecular and magnetic structure and behavior of materials, such as high-temperature superconductors , polymers , metals, and biological samples.
In many areas of science, Bragg's law, Wulff–Bragg's condition, or Laue–Bragg interference are a special case of Laue diffraction, giving the angles for coherent scattering of waves from a large crystal lattice. It describes how the superposition of wave fronts scattered by lattice planes leads to a strict relation between the wavelength ...