Search results
Results from the WOW.Com Content Network
In method 1, a slow pre-computation (such as the Remez algorithm) can be used to obtain an optimal (per application requirements) filter design. Method 2 will work in more general cases, e.g. where the ratio of sample rates is not rational, or two real-time streams must be accommodated, or the sample rates are time-varying.
The block bootstrap tries to replicate the correlation by resampling inside blocks of data (see Blocking (statistics)). The block bootstrap has been used mainly with data correlated in time (i.e. time series) but can also be used with data correlated in space, or among groups (so-called cluster data).
Subsampling is an alternative method for approximating the sampling distribution of an estimator. The two key differences to the bootstrap are: the resample size is smaller than the sample size and; resampling is done without replacement. The advantage of subsampling is that it is valid under much weaker conditions compared to the bootstrap.
Cross-validation includes resampling and sample splitting methods that use different portions of the data to test and train a model on different iterations. It is often used in settings where the goal is prediction, and one wants to estimate how accurately a predictive model will perform in practice.
Schematic of Jackknife Resampling. In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling. It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap.
Ideally, unevenly spaced time series are analyzed in their unaltered form. However, most of the basic theory for time series analysis was developed at a time when limitations in computing resources favored an analysis of equally spaced data, since in this case efficient linear algebra routines can be used and many problems have an explicit ...
Pandas (styled as pandas) is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series. It is free software released under the three-clause BSD license. [2]
To create a synthetic data point, take the vector between one of those k neighbors, and the current data point. Multiply this vector by a random number x which lies between 0, and 1. Add this to the current data point to create the new, synthetic data point. Many modifications and extensions have been made to the SMOTE method ever since its ...