enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Inverse_Laplace_transform

    Post's inversion formula for Laplace transforms, named after Emil Post, [3] is a simple-looking but usually impractical formula for evaluating an inverse Laplace transform. The statement of the formula is as follows: Let f ( t ) {\displaystyle f(t)} be a continuous function on the interval [ 0 , ∞ ) {\displaystyle [0,\infty )} of exponential ...

  3. MATHLAB - Wikipedia

    en.wikipedia.org/wiki/MATHLAB

    MATHLAB 68 has been used to solve electrical linear circuits using an acausal modeling approach for symbolic circuit analysis. [2] This application was developed as a plug-in for MATHLAB 68 (open-source), building on MATHLAB's linear algebra facilities (Laplace transforms, inverse Laplace transforms and linear algebra manipulation).

  4. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The following is a list of Laplace transforms for many common functions of a single variable. [1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency ).

  5. Mellin inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Mellin_inversion_theorem

    Then is recoverable via the inverse Mellin transform from its Mellin transform . These results can be obtained by relating the Mellin transform to the Fourier transform by a change of variables and then applying an appropriate version of the Fourier inversion theorem .

  6. Two-sided Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Two-sided_Laplace_transform

    Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If f ( t ) is a real- or complex-valued function of the real variable t defined for all real numbers, then the two-sided Laplace transform is defined by the integral

  7. Laplace transform applied to differential equations - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform_applied...

    In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform:

  8. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain ) equals point-wise multiplication in the other domain (e.g., frequency domain ).

  9. Laplace–Carson transform - Wikipedia

    en.wikipedia.org/wiki/Laplace–Carson_transform

    Let (,) be a function and a complex variable. The Laplace–Carson transform is defined as: [1] (,) = (,)The inverse Laplace–Carson transform is: (,) = + (,)where is a real-valued constant, refers to the imaginary axis, which indicates the integral is carried out along a straight line parallel to the imaginary axis lying to the right of all the singularities of the following expression: