Search results
Results from the WOW.Com Content Network
A conjugate eigenvector or coneigenvector is a vector sent after transformation to a scalar multiple of its conjugate, where the scalar is called the conjugate eigenvalue or coneigenvalue of the linear transformation. The coneigenvectors and coneigenvalues represent essentially the same information and meaning as the regular eigenvectors and ...
If the linear transformation is expressed in the form of an n by n matrix A, then the eigenvalue equation for a linear transformation above can be rewritten as the matrix multiplication =, where the eigenvector v is an n by 1 matrix. For a matrix, eigenvalues and eigenvectors can be used to decompose the matrix—for example by diagonalizing it.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
Existence: An n-by-n matrix A always has n (complex) eigenvalues, which can be ordered (in more than one way) to form an n-by-n diagonal matrix D and a corresponding matrix of nonzero columns V that satisfies the eigenvalue equation =.
restore matrix S for l := k+1 to n do S kl := S lk endfor endfor. 3. The eigenvalues are not necessarily in descending order. This can be achieved by a simple sorting algorithm. for k := 1 to n−1 do m := k for l := k+1 to n do if e l > e m then m := l endif endfor if k ≠ m then swap e m,e k swap E m,E k endif endfor. 4.
Typically, the method is used in combination with some other method which finds approximate eigenvalues: the standard example is the bisection eigenvalue algorithm, another example is the Rayleigh quotient iteration, which is actually the same inverse iteration with the choice of the approximate eigenvalue as the Rayleigh quotient corresponding ...
Thus a (matrix) solution to the eigenvector problem with eigenvalues of ±1 is simply 1 ± S u. That is, = One can then choose either of the columns of the eigenvector matrix as the vector solution, provided that the column chosen is not zero. Taking the first column of the above, eigenvector solutions for the two eigenvalues are:
The matrix maps the basis vector to the stretched unit vector . By the definition of a unitary matrix, the same is true for their conjugate transposes U ∗ {\displaystyle \mathbf {U} ^{*}} and V , {\displaystyle \mathbf {V} ,} except the geometric interpretation of the singular values as stretches is lost.