Search results
Results from the WOW.Com Content Network
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method, so it is considered a quasi-Newton method.
The Davidon–Fletcher–Powell formula (or DFP; named after William C. Davidon, Roger Fletcher, and Michael J. D. Powell) finds the solution to the secant equation that is closest to the current estimate and satisfies the curvature condition. It was the first quasi-Newton method to generalize the secant method to a
The secant method increases the number of correct digits by "only" a factor of roughly 1.6 per step, but one can do twice as many steps of the secant method within a given time. Since the secant method can carry out twice as many steps in the same time as Steffensen's method, [b] in practical use the secant method actually converges faster than ...
As noted in the introduction, inverse quadratic interpolation is used in Brent's method. Inverse quadratic interpolation is also closely related to some other root-finding methods. Using linear interpolation instead of quadratic interpolation gives the secant method. Interpolating f instead of the inverse of f gives Muller's method.
The name is in analogy with quadrature, meaning numerical integration, where weighted sums are used in methods such as Simpson's rule or the trapezoidal rule. There are various methods for determining the weight coefficients, for example, the Savitzky–Golay filter. Differential quadrature is used to solve partial differential equations. There ...
Quasi-Newton methods are a generalization of the secant method to find the root of the first derivative for multidimensional problems. In multiple dimensions the secant equation is under-determined, and quasi-Newton methods differ in how they constrain the solution, typically by adding a simple low-rank update to the current estimate of the ...
The Symmetric Rank 1 (SR1) method is a quasi-Newton method to update the second derivative (Hessian) based on the derivatives (gradients) calculated at two points. It is a generalization to the secant method for a multidimensional problem.
Sidi's method reduces to the secant method if we take k = 1. In this case the polynomial p n , 1 ( x ) {\displaystyle p_{n,1}(x)} is the linear approximation of f {\displaystyle f} around α {\displaystyle \alpha } which is used in the n th iteration of the secant method.