Ad
related to: solenoid coil design calculations for electrical units
Search results
Results from the WOW.Com Content Network
A solenoid (/ ˈ s oʊ l ə n ɔɪ d / [1]) is a type of electromagnet formed by a helical coil of wire whose length is substantially greater than its diameter, [2] which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it.
In engineering, a solenoid is a device that converts electrical energy to mechanical energy, using an electromagnet formed from a coil of wire. The device creates a magnetic field [ 1 ] from electric current , and uses the magnetic field to create linear motion.
A solenoid is a long, thin coil; i.e., a coil whose length is much greater than its diameter. Under these conditions, and without any magnetic material used, the magnetic flux density B {\displaystyle B} within the coil is practically constant and is given by B = μ 0 N i ℓ {\displaystyle B={\frac {\mu _{0}\,N\,i}{\ell }}}
The design or interpretation of the required space of an orthocyclic winding is usually realized by applying an iterative approach. At first, the specified parameters of the required number of windings, the required wire cross section and the maximum space available for an insulated coil are used for the calculation basis.
The henry (symbol: H) is the unit of electrical inductance in the International System of Units (SI). [1] If a current of 1 ampere flowing through a coil produces flux linkage of 1 weber turn, that coil has a self-inductance of 1 henry. The unit is named after Joseph Henry (1797–1878), the American scientist who discovered electromagnetic induction independently of and at about the same ...
A solenoid The longitudinal cross section of a solenoid with a constant electrical current running through it. The magnetic field lines are indicated, with their direction shown by arrows. The magnetic flux corresponds to the 'density of field lines'. The magnetic flux is thus densest in the middle of the solenoid, and weakest outside of it.
Thus, for a typical inductance (a coil of conducting wire), the flux linkage is equivalent to magnetic flux, which is the total magnetic field passing through the surface (i.e., normal to that surface) formed by a closed conducting loop coil and is determined by the number of turns in the coil and the magnetic field, i.e.,
The combined costs of conductors, structure and refrigerator for toroidal coils are dominated by the cost of the superconductor. The same trend is true for solenoid coils. HTSC coils cost more than LTSC coils by a factor of 2 to 4. HTSC was expected to be cheaper due to lower refrigeration requirements but this is not the case.
Ad
related to: solenoid coil design calculations for electrical units