Search results
Results from the WOW.Com Content Network
Row echelon form. In linear algebra, a matrix is in row echelon form if it can be obtained as the result of Gaussian elimination. Every matrix can be put in row echelon form by applying a sequence of elementary row operations. The term echelon comes from the French échelon ("level" or step of a ladder), and refers to the fact that the nonzero ...
The row echelon form is a canonical form, when one considers as equivalent a matrix and its left product by an invertible matrix. In computer science, and more specifically in computer algebra , when representing mathematical objects in a computer, there are usually many different ways to represent the same object.
The lambdas are the eigenvalues of the matrix; they need not be distinct. In linear algebra, a Jordan normal form, also known as a Jordan canonical form, [1][2] is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis.
Eigendecomposition of a matrix. In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the ...
A linear recursive sequence defined by for has the characteristic polynomial , whose transpose companion matrix generates the sequence: The vector is an eigenvector of this matrix, where the eigenvalue is a root of . Setting the initial values of the sequence equal to this vector produces a geometric sequence which satisfies the recurrence.
In computer science, canonicalization (sometimes standardization or normalization) is a process for converting data that has more than one possible representation into a "standard", "normal", or canonical form. This can be done to compare different representations for equivalence, to count the number of distinct data structures, to improve the ...
Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes ...
Karnaugh maps are used to simplify real-world logic requirements so that they can be implemented using the minimal number of logic gates. A sum-of-products expression (SOP) can always be implemented using AND gates feeding into an OR gate, and a product-of-sums expression (POS) leads to OR gates feeding an AND gate.