enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/.../Matrix_multiplication_algorithm

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  3. Basic Linear Algebra Subprograms - Wikipedia

    en.wikipedia.org/wiki/Basic_Linear_Algebra...

    The library routines would also be better than average implementations; matrix algorithms, for example, might use full pivoting to get better numerical accuracy. The library routines would also have more efficient routines. For example, a library may include a program to solve a matrix that is upper triangular.

  4. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Computing the k th power of a matrix needs k – 1 times the time of a single matrix multiplication, if it is done with the trivial algorithm (repeated multiplication). As this may be very time consuming, one generally prefers using exponentiation by squaring , which requires less than 2 log 2 k matrix multiplications, and is therefore much ...

  5. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The best known lower bound for matrix-multiplication complexity is Ω(n 2 log(n)), for bounded coefficient arithmetic circuits over the real or complex numbers, and is due to Ran Raz. [32] The exponent ω is defined to be a limit point, in that it is the infimum of the exponent over all matrix multiplication algorithms. It is known that this ...

  6. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.

  7. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives the same result as the full matrix multiplication on the left.

  8. Comparison of linear algebra libraries - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_linear...

    3.12.0 / 11.2023 Free 3-clause BSD: Numerical linear algebra library with long history librsb: Michele Martone C, Fortran, M4 2011 1.2.0 / 09.2016 Free GPL: High-performance multi-threaded primitives for large sparse matrices. Support operations for iterative solvers: multiplication, triangular solve, scaling, matrix I/O, matrix rendering.

  9. Matrix chain multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_chain_multiplication

    An algorithm published by T. C. Hu and M.-T. Shing achieves O(n log n) computational complexity. [3] [4] [5] They showed how the matrix chain multiplication problem can be transformed (or reduced) into the problem of triangulation of a regular polygon. The polygon is oriented such that there is a horizontal bottom side, called the base, which ...