enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mersenne prime - Wikipedia

    en.wikipedia.org/wiki/Mersenne_prime

    Proof: By Fermat's little theorem, q is a factor of 2 q−11. Since q is a factor of 2 p − 1, for all positive integers c, q is also a factor of 2 pc − 1. Since p is prime and q is not a factor of 2 11, p is also the smallest positive integer x such that q is a factor of 2 x − 1.

  3. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    First, 2 is prime. Then, by strong induction, assume this is true for all numbers greater than 1 and less than n. If n is prime, there is nothing more to prove. Otherwise, there are integers a and b, where n = a b, and 1 < a ≤ b < n. By the induction hypothesis, a = p 1 p 2 ⋅⋅⋅ p j and b = q 1 q 2 ⋅⋅⋅ q k are products of primes.

  4. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    A more recent "elementary" proof of the prime number theorem uses ... is the number of prime factors, ... Except for 2 and 5, all prime numbers end in 1, 3, 7, or 9. ...

  5. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Euclid offered a proof published in his work Elements (Book IX, Proposition 20), [1] which is paraphrased here. [2] Consider any finite list of prime numbers p 1, p 2, ..., p n. It will be shown that there exists at least one additional prime number not included in this list. Let P be the product of all the prime numbers in the list: P = p 1 p ...

  6. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a ...

  7. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    In additive number theory, Fermat 's theorem on sums of two squares states that an odd prime p can be expressed as: with x and y integers, if and only if. The prime numbers for which this is true are called Pythagorean primes. For example, the primes 5, 13, 17, 29, 37 and 41 are all congruent to 1 modulo 4, and they can be expressed as sums of ...

  8. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    Wilson's theorem. In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is (using the notations of modular arithmetic), the factorial satisfies. exactly when n is a prime number.

  9. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    As of 2024, it is known that F n is composite for 5 ≤ n ≤ 32, although of these, complete factorizations of F n are known only for 0 ≤ n ≤ 11, and there are no known prime factors for n = 20 and n = 24. [5] The largest Fermat number known to be composite is F 18233954, and its prime factor 7 × 2 18233956 + 1 was discovered in October 2020.