enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Universal set - Wikipedia

    en.wikipedia.org/wiki/Universal_set

    Universal set. In set theory, a universal set is a set which contains all objects, including itself. [1] In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set.

  3. Complement (set theory) - Wikipedia

    en.wikipedia.org/wiki/Complement_(set_theory)

    If the set B is the union of the suits of clubs and diamonds, then the complement of B is the union of the suits of hearts and spades. When the universe is the universe of sets described in formalized set theory, the absolute complement of a set is generally not itself a set, but rather a proper class. For more info, see universal set.

  4. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set , the set of all subsets of known as the power set of has a strictly greater cardinality than itself. For finite sets, Cantor's theorem can be seen to be true by simple enumeration of the number of subsets.

  5. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  6. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory — as a branch of mathematics — is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was ...

  7. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    Method. A naive theory in the sense of "naive set theory" is a non-formalized theory, that is, a theory that uses natural language to describe sets and operations on sets. Such theory treats sets as platonic absolute objects. The words and, or, if ... then, not, for some, for every are treated as in ordinary mathematics.

  8. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    Fundamentals. The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  9. Class (set theory) - Wikipedia

    en.wikipedia.org/wiki/Class_(set_theory)

    Class (set theory) In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. Classes act as a way to have set-like collections while differing from sets so as to avoid paradoxes, especially ...