Search results
Results from the WOW.Com Content Network
The image above contains clickable links Interactive image of nucleic acid structure (primary, secondary, tertiary, and quaternary) using DNA helices and examples from the VS ribozyme and telomerase and nucleosome. Nucleic acid structure refers to the structure of nucleic acids such as DNA and RNA. Chemically speaking, DNA and RNA are very similar.
Nucleic acids RNA (left) and DNA (right). Nucleic acids are large biomolecules that are crucial in all cells and viruses. [1] They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid ...
The sequence of nucleobases on a nucleic acid strand is translated by cell machinery into a sequence of amino acids making up a protein strand. Each group of three bases, called a codon , corresponds to a single amino acid, and there is a specific genetic code by which each possible combination of three bases corresponds to a specific amino acid.
An RNA pseudoknot structure. For example, the RNA component of human telomerase. [7] A pseudoknot is a nucleic acid secondary structure containing at least two stem-loop structures in which half of one stem is intercalated between the two halves of another stem.
CBS Genome Atlas Database — contains examples of base skews. The Z curve database of genomes — a 3-dimensional visualization and analysis tool of genomes. DNA and other nucleic acids' molecular models: Coordinate files of nucleic acids molecular structure models in PDB and CIF formats; Atomic force microscopy. How SPM Works
Three dimensional structure of almost the same pseudoknot from telomerase RNA. (A) sticks (B) backbone. The pdb-file is based on . Colors: A U C G. A pseudoknot is a nucleic acid secondary structure containing at least two stem-loop structures in which half
DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life. The two DNA strands are known as polynucleotides as they are composed of simpler monomeric units called nucleotides.
At the sides of nucleic acid structure, phosphate molecules successively connect the two sugar-rings of two adjacent nucleotide monomers, thereby creating a long chain biomolecule. These chain-joins of phosphates with sugars ( ribose or deoxyribose ) create the "backbone" strands for a single- or double helix biomolecule.