Search results
Results from the WOW.Com Content Network
Inductance is defined as the ratio of the induced voltage to the rate of change of current causing it. [1] It is a proportionality constant that depends on the geometry of circuit conductors (e.g., cross-section area and length) and the magnetic permeability of the conductor and nearby materials. [1]
Heaviside's version (see Maxwell–Faraday equation below) is the form recognized today in the group of equations known as Maxwell's equations. Lenz's law , formulated by Emil Lenz in 1834, [ 13 ] describes "flux through the circuit", and gives the direction of the induced emf and current resulting from electromagnetic induction (elaborated ...
Heaviside's version (see Maxwell–Faraday equation below) is the form recognized today in the group of equations known as Maxwell's equations. In 1834 Heinrich Lenz formulated the law named after him to describe the "flux through the circuit". Lenz's law gives the direction of the induced emf and current resulting from electromagnetic induction.
The constitutive equation describes the behavior of an ideal inductor with inductance , and without resistance, capacitance, or energy dissipation. In practice, inductors do not follow this theoretical model; real inductors have a measurable resistance due to the resistance of the wire and energy losses in the core, and parasitic capacitance ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, [1] one arrives at the three mathematical equations used to describe this relationship: [2]
The term constant is even more misleading for the secondary constants as they usually vary quite strongly with frequency, even in an ideal situation where the primary constants do not. This is because the reactances in the circuit ( ω L {\displaystyle \scriptstyle \omega L} and 1 / ( ω C ) {\displaystyle \scriptstyle 1/(\omega C)} ) introduce ...
Applying the transmission line model based on the telegrapher's equations as derived below, [1] [2] the general expression for the characteristic impedance of a transmission line is: = + + where R {\displaystyle R} is the resistance per unit length, considering the two conductors to be in series ,