enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    II:106 Although Bohr's model would also rely on just the electron to explain the spectrum, he did not assume an electrodynamical model for the atom. The other important advance in the understanding of atomic spectra was the Rydberg–Ritz combination principle which related atomic spectral line frequencies to differences between 'terms ...

  3. Fine-structure constant - Wikipedia

    en.wikipedia.org/wiki/Fine-structure_constant

    The fine-structure constant gives the maximum positive charge of an atomic nucleus that will allow a stable electron-orbit around it within the Bohr model (element feynmanium). [20] For an electron orbiting an atomic nucleus with atomic number Z the relation is ⁠ mv 2 / r ⁠ = ⁠ 1 / 4πε 0 ⁠ ⁠ Ze 2 / r 2 ⁠.

  4. Matrix mechanics - Wikipedia

    en.wikipedia.org/wiki/Matrix_mechanics

    Matrix mechanics, on the other hand, came from the Bohr school, which was concerned with discrete energy states and quantum jumps. Bohr's followers did not appreciate physical models that pictured electrons as waves, or as anything at all. They preferred to focus on the quantities that were directly connected to experiments.

  5. History of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/History_of_quantum_mechanics

    The model's key success lay in explaining the Rydberg formula for the spectral emission lines of atomic hydrogen by using the transitions of electrons between orbits. [24]: 276 While the Rydberg formula had been known experimentally, it did not gain a theoretical underpinning until the Bohr model was introduced. Not only did the Bohr model ...

  6. Bohr–Sommerfeld model - Wikipedia

    en.wikipedia.org/wiki/Bohr–Sommerfeld_model

    Calculations based on the Bohr–Sommerfeld model were able to accurately explain a number of more complex atomic spectral effects. For example, up to first-order perturbations, the Bohr model and quantum mechanics make the same predictions for the spectral line splitting in the Stark effect. At higher-order perturbations, however, the Bohr ...

  7. Complementarity (physics) - Wikipedia

    en.wikipedia.org/wiki/Complementarity_(physics)

    Complementarity as a physical model derives from Niels Bohr's 1927 lecture during the Como Conference in Italy, at a scientific celebration of the work of Alessandro Volta 100 years previous. [ 4 ] : 103 Bohr's subject was complementarity, the idea that measurements of quantum events provide complementary information through seemingly ...

  8. Book Review: The Complete Idiot's Guide to Personal Finance ...

    www.aol.com/news/2009-10-08-book-review-the...

    For a lot of individuals in their 20s and 30s personal finances have a lot in common with David Copperfield; money appears and disappears and sometimes it earns more in a bank account but at the ...

  9. Atomic physics - Wikipedia

    en.wikipedia.org/wiki/Atomic_physics

    The Bohr model, proposed by Niels Bohr in 1913, is a revolutionary theory describing the structure of the hydrogen atom. It introduced the idea of quantized orbits for electrons, combining classical and quantum physics. Key Postulates of the Bohr Model. 1. Electrons Move in Circular Orbits: