enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  3. Long division - Wikipedia

    en.wikipedia.org/wiki/Long_division

    Decimal numbers are not divided directly, the dividend and divisor are multiplied by a power of ten so that the division involves two whole numbers. Therefore, if one were dividing 12,7 by 0,4 (commas being used instead of decimal points), the dividend and divisor would first be changed to 127 and 4, and then the division would proceed as above.

  4. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    Demonstration, with Cuisenaire rods, of the first four highly composite numbers: 1, 2, 4, 6. A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N.

  5. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    This allows one to predict that certain forms of numbers will always lead to a smaller number after a certain number of iterations: for example, 4a + 1 becomes 3a + 1 after two applications of f and 16a + 3 becomes 9a + 2 after four applications of f. Whether those smaller numbers continue to 1, however, depends on the value of a.

  6. Division by infinity - Wikipedia

    en.wikipedia.org/wiki/Division_by_infinity

    However, "dividing by ∞" can be given meaning as an informal way of expressing the limit of dividing a number by larger and larger divisors. [ 1 ] : 201–204 Using mathematical structures that go beyond the real numbers , it is possible to define numbers that have infinite magnitude yet can still be manipulated in ways much like ordinary ...

  7. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    Logarithm tables can be used to divide two numbers, by subtracting the two numbers' logarithms, then looking up the antilogarithm of the result. Division can be calculated with a slide rule by aligning the divisor on the C scale with the dividend on the D scale. The quotient can be found on the D scale where it is aligned with the left index on ...

  8. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5), and the same number 21 is also the GCD of 105 and 252 − 105 = 147. Since ...

  9. 6174 - Wikipedia

    en.wikipedia.org/wiki/6174

    This number is notable for the following curious behavior: Select any four-digit number which has at least two different digits (leading zeros are allowed), Create two new four-digit numbers by arranging the original digits in a.) ascending and b.) descending order (adding leading zeros if necessary). Subtract the smaller number from the bigger ...