Search results
Results from the WOW.Com Content Network
In geometry, collinearity of a set of points is the property of their lying on a single line. [1] A set of points with this property is said to be collinear (sometimes spelled as colinear [ 2 ] ). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".
This is different from the behavior in higher dimensions, and thus one gives a more restrictive definition, specified so that the fundamental theorem of projective geometry holds. In this definition, when V has dimension two, a collineation from PG ( V ) to PG ( W ) is a map α : D ( V ) → D ( W ) , such that:
Perfect collinearity is typically caused by including redundant variables in a regression. For example, a dataset may include variables for income, expenses, and savings. However, because income is equal to expenses plus savings by definition, it is incorrect to include all 3 variables in a regression simultaneously.
Collinearity is not the only geometric property of configurations of points that must be maintained – for example, five points determine a conic, but six general points do not lie on a conic, so whether any 6-tuple of points lies on a conic is also a projective invariant.
The maximum distance (as measured in the collinearity graph) between two points is d, and; For every point X and line l there is a unique point on l that is closest to X. A near 0-gon is a point, while a near 2-gon is a line. The collinearity graph of a near 2-gon is a complete graph. A near 4-gon is a generalized quadrangle (possibly degenerate).
Mathematical psychology is an approach to psychological research that is based on mathematical modeling of perceptual, thought, cognitive and motor processes, and on the establishment of law-like rules that relate quantifiable stimulus characteristics with quantifiable behavior (in practice often constituted by task performance).
For example, the first Napoleon point is the point of concurrency of the three lines each from a vertex to the centroid of the equilateral triangle drawn on the exterior of the opposite side from the vertex. A generalization of this notion is the Jacobi point. The de Longchamps point is the point of concurrence of several lines with the Euler line.
The classic example is the relation of collinearity among three points in Euclidean space. In an abstract set, a ternary equivalence relation determines a collection of equivalence classes or pencils that form a linear space in the sense of incidence geometry. In the same way, a binary equivalence relation on a set determines a partition.